In [1]:
Copied!
import pandas as pd
import pandas as pd
Parse CSV, trial & error¶
In [2]:
Copied!
pd.read_csv('output/SchPark01.csv')
pd.read_csv('output/SchPark01.csv')
Out[2]:
2011/01/01;00:00;0.0;-0.6 | |
---|---|
0 | 2011/01/01;00:15;0.0;-0.4 |
1 | 2011/01/01;00:30;0.0;-0.5 |
2 | 2011/01/01;00:45;0.0;-0.5 |
3 | 2011/01/01;01:00;0.0;-0.7 |
4 | 2011/01/01;01:15;0.0;-0.6 |
... | ... |
35034 | 2011/12/31;22:45;0.0;7.9 |
35035 | 2011/12/31;23:00;0.0;7.9 |
35036 | 2011/12/31;23:15;0.0;8.4 |
35037 | 2011/12/31;23:30;0.0;8.5 |
35038 | 2011/12/31;23:45;0.0;8.1 |
35039 rows × 1 columns
In [3]:
Copied!
pd.read_csv('output/SchPark01.csv', sep=';')
pd.read_csv('output/SchPark01.csv', sep=';')
Out[3]:
2011/01/01 | 00:00 | 0.0 | -0.6 | |
---|---|---|---|---|
0 | 2011/01/01 | 00:15 | 0.0 | -0.4 |
1 | 2011/01/01 | 00:30 | 0.0 | -0.5 |
2 | 2011/01/01 | 00:45 | 0.0 | -0.5 |
3 | 2011/01/01 | 01:00 | 0.0 | -0.7 |
4 | 2011/01/01 | 01:15 | 0.0 | -0.6 |
... | ... | ... | ... | ... |
35034 | 2011/12/31 | 22:45 | 0.0 | 7.9 |
35035 | 2011/12/31 | 23:00 | 0.0 | 7.9 |
35036 | 2011/12/31 | 23:15 | 0.0 | 8.4 |
35037 | 2011/12/31 | 23:30 | 0.0 | 8.5 |
35038 | 2011/12/31 | 23:45 | 0.0 | 8.1 |
35039 rows × 4 columns
In [4]:
Copied!
pd.read_csv('output/SchPark01.csv', sep=';',
names = ['date', 'time', 'ghi', 'ta'])
pd.read_csv('output/SchPark01.csv', sep=';',
names = ['date', 'time', 'ghi', 'ta'])
Out[4]:
date | time | ghi | ta | |
---|---|---|---|---|
0 | 2011/01/01 | 00:00 | 0.0 | -0.6 |
1 | 2011/01/01 | 00:15 | 0.0 | -0.4 |
2 | 2011/01/01 | 00:30 | 0.0 | -0.5 |
3 | 2011/01/01 | 00:45 | 0.0 | -0.5 |
4 | 2011/01/01 | 01:00 | 0.0 | -0.7 |
... | ... | ... | ... | ... |
35035 | 2011/12/31 | 22:45 | 0.0 | 7.9 |
35036 | 2011/12/31 | 23:00 | 0.0 | 7.9 |
35037 | 2011/12/31 | 23:15 | 0.0 | 8.4 |
35038 | 2011/12/31 | 23:30 | 0.0 | 8.5 |
35039 | 2011/12/31 | 23:45 | 0.0 | 8.1 |
35040 rows × 4 columns
Parse CSV¶
In [5]:
Copied!
df = pd.read_csv('output/SchPark01.csv',
sep = ';',
na_values = ' ',
names = ['date', 'time', 'ghi', 'ta'],
)
# https://stackoverflow.com/a/77983644/6419007
df['datetime'] = pd.to_datetime(df.pop('date')+' '+ df.pop('time'),
format="%Y/%m/%d %H:%M")
df = df.set_index('datetime')
df
df = pd.read_csv('output/SchPark01.csv',
sep = ';',
na_values = ' ',
names = ['date', 'time', 'ghi', 'ta'],
)
# https://stackoverflow.com/a/77983644/6419007
df['datetime'] = pd.to_datetime(df.pop('date')+' '+ df.pop('time'),
format="%Y/%m/%d %H:%M")
df = df.set_index('datetime')
df
Out[5]:
ghi | ta | |
---|---|---|
datetime | ||
2011-01-01 00:00:00 | 0.0 | -0.6 |
2011-01-01 00:15:00 | 0.0 | -0.4 |
2011-01-01 00:30:00 | 0.0 | -0.5 |
2011-01-01 00:45:00 | 0.0 | -0.5 |
2011-01-01 01:00:00 | 0.0 | -0.7 |
... | ... | ... |
2011-12-31 22:45:00 | 0.0 | 7.9 |
2011-12-31 23:00:00 | 0.0 | 7.9 |
2011-12-31 23:15:00 | 0.0 | 8.4 |
2011-12-31 23:30:00 | 0.0 | 8.5 |
2011-12-31 23:45:00 | 0.0 | 8.1 |
35040 rows × 2 columns
Plots¶
In [6]:
Copied!
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
In [7]:
Copied!
plt.rcParams['figure.figsize'] = (15, 8)
plt.rcParams['figure.figsize'] = (15, 8)
In [8]:
Copied!
df.plot();
df.plot();
In [9]:
Copied!
df.resample('ME').mean().plot();
df.resample('ME').mean().plot();
In [10]:
Copied!
import seaborn as sns
import seaborn as sns
In [11]:
Copied!
sns.heatmap(
pd.pivot_table(df, values='ghi', index=df.index.time, columns=df.index.dayofyear),
annot=False);
sns.heatmap(
pd.pivot_table(df, values='ghi', index=df.index.time, columns=df.index.dayofyear),
annot=False);
In [12]:
Copied!
sns.heatmap(
pd.pivot_table(df, values='ta', index=df.index.time, columns=df.index.dayofyear),
annot=False);
sns.heatmap(
pd.pivot_table(df, values='ta', index=df.index.time, columns=df.index.dayofyear),
annot=False);